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1. INTRODUCTION

The earliest numerical methods introduced to solve the Vlasov—Poisson system \
polynomial expansions [1]. In these methods, the position dependence is usually expa
in Fourier modes and the velocity dependence is treated either through Fourier modes |
or Hermite polynomials [7—11]. Then splitting schemes appeared. In those schemes
initial Vlasov equations split in two partial differential equations, one,ih the other in
v, t. These equations must be solved alternatively [1]. A simple way of solving the spli
equations is to use Fourier transform alternatively for bottind v subspaces [12, 13].
The tendency of the distribution functiofi(x, v, t) to develop steep gradients in phase
space (“the filamentation”) inhibits the numerical solution to the Vlasov—Poisson syst
[13]. In order to ward off this problem Klimas has introduced a smoothed Fourier—Fourt
method [16]. This method consists of convolving the original distribution function with
Gaussian distribution function and then solving the new system with a transformed split
algorithm. Unfortunately, a second-order term appears in the new equation.

In this work, we study how this term affects the numerical resolution. In particul
we prove that instability occurs in the linear version of the Vlasov equation obtained
considering only free noninteracting particles. We prove also that the use of Fourier—Fot
transform is a fundamental requirement for solving numerically this new equation. We p
out an important property, which is not completely clarified in [16], concerning the filter
distribution function in the transformed space. The paper is organized as follows. In
second section we define the mathematical model. In Section 3 we prove the instabilit
the smoothed equation with respect to perturbations. Section 4 is devoted to the ne
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using Fourier—Fourier transforms to obtain a stable splitting scheme. Our conclusions
given in Section 5.

2. THE MATHEMATICAL MODEL

The evolution of a one-dimensional electron plasma in a periodic box can be descr
by the normalized Vlasov—Poisson system.

af  of af
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where f (x, v, t) denotes the electron distribution functidexx, t) is the electric field, and
L is the length of the periodic spatial box. In these uniis normalized to the inverse of
plasma frequency, v to the thermal velocityy,, andx to the Debye lengthp.

The idea to use a splitting algorithm in time to integrate the Vlasov equation (1) w
introduced firstin [2]. Asitis difficult to distinguish between the mathematical filamentati
and the numerical noise, a method of filtering was introduced in [16]. Its philosophy cons
of a convolution of the distribution functioh by a Gaussian filter in the variablgo obtain
the smoothed functiof,

f(x,v,t) = /F(v —uf(x,u,t)du, ©)
where

1
Fv) = o g (/0?2 (4)
N 2mvg

andup is a constant parameter giving the width of the Gaussian filter in thermal veloc
units. We remark thaE = E since

/}dvz/?hu (5)

Now, in order to obtain a new equation drwe compute as in [16]
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_/ (U_ZU)F(v—u)f(x,u,t)du
Yo
of

Combining, (6), (7), and (8), we obtain thatsolves

af  of f 32f

LBt 2 9

ot T Vax TEX ) U050’ ©)
_ / fox. v dv — 1. (10)

The aim of the present paper is to compare the stability properties with respect to
turbations of Egs. (1) and (9). The conclusion we get is that the solutions to (9) car
obtained only by the use of Fourier transforms and so are very sensitive to perturbati
Consequently we have to be extremely careful when using such a method for nume
computation, in the case of general initial conditions.

Since the filamentation process is associated to the free streamlngugérmt |s
sufficient to consider the free streaming problem, dropping into (9) the Ea(lxnt)

Thus, let us only consider the equation

ag g _ .2 3%g
{at+v8x_ V0 3xav

g(x, v, 0) = go(X, v).

(11

In order to solve exactly Eqg. (11), let us define the double Fourier trangjarhg both
in x andv by

1/ 7 oo
gm, v, t) = E/ / e (MTx) g(x, v, t) dx dv, (12)
x=0 JveR
Introducing (12) in (11), we obtain

99

g ~
o koma = vgkomv{, (13)

wherekg is the fundamental wave numbley = %

Now let us study the Cauchy problem, which consists of solving Eq. (13) with initi
condition

g(m, v, 0) = Go(m, v). (14)
The solution of system (13)—(14) is given by
§(m, v, 1) = Go(m, v + Mkgt)eoMkortgzGmGt? (15)

Then, in order to obtain a solution to (11), we need to find a funaicuch that its
Fourier transform igj defined in (15). Ifjo(m, v) is an arbitrary function, we observe that,
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asymptotically, ifv andm have the same sign then the tegtio ez v6m* kit jn (15) tends

exponentially to infinity, and therefore there is no function hagiag the Fourier transform.
Consequently there is no well behaved solution to (1) iis an arbitrary function [14].

On the contrary, let the initial distribution functiag take the form

Jo(X, v) = fo(X, v) x F(v); (16)
then
Go(m, v) = fo(m, v)e 26", (17)
Hence, we get from (15)
§(m, v, t) = fo(m, v + mkt)e 24", (18)
or equivalently
f(m, v, t) = fo(m, v + mkt) = §(m, v, t)ez%"’, (19)

which is the solution to the Vlasov equation. Of course, at this level, equation

of of
i + i 0 (20)
and Eqg. (11) are equivalent, but this may no longer be the case when introducing dis
approximation. By these formulas we see indeed that the facggHads the form (16) is
crucial, and, as we shall see in Section 3, we have to keep this property for all time
discrete approximation.

Our purpose is to understand what does the filtering method. As a first point we hav
realize that the filamentation is a physical process and the detdilxob, t); i.e., the high
v components must be kept and play a crucial role in situations like in the echo prob
[15]. The multiplication of these large components bg~2%"* neither bring nor destroy
the needed information, but we should be concerned that a toolgigan introduce too
small§(m, v) exposed to destruction by roundoff error.

It must be noticed that many checks of numerical methods use the linear Landau dam
as a test case. It is a misleading check. The perturbed part of the distribution func
enter only through its componenits=0 (the perturbed density). All the subtle nonlineat
phenomena are hidden inm, v, t). Notice thatf (m,v=0,t) = f_(m, v=0,1t), whichis
the only value needed for the linear Landau damping problem.

3. STABILITY

It is interesting to investigate the stability of (11) with respect to perturbations. For tl
purpose, we compare the exact solution to (11), which can be written as

gt = S(1)g(0), (21)
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with S(t) the resolution operator, which can be expressed by (15), and an approxin
solutionh, computed by

hn+1 = A(At)hn, (22)

with A(At) an approximate resolution operator, dnd= g(0). At a fixed timeT = nAt,
we assume that there is a slight difference betwgesndg as

hn = g(T) + 8. (23)

Then, in the next step, since the operakos linear, the difference betwedn,; andg
takes the following form:

hni1 — g(t) = (A(AY) — S(At))hn + S(At)Sg. (24)

For this difference to be small, we need both terms in the right-hand side of (24)
be small. The first one depends on the waypproachess, but for the second one, as
we discussed befordg needs to be small with respecteo"g“z/z. Therefore, a necessary
condition for the approximate method to be stable is that the opefatsr) preserves the
exponential decrease at infinity of the Fourier transform. Generally, this property is v
difficult to obtain unlessA(At) is defined itself by Fourier transform. Moreover, it might
be lost when taking into account the acceleration term due to the electric field.

4. NEED TO USE FOURIER-FOURIER TRANSFORM

In the following, we show that the resolution of Eq. (9) can be performed only by tl
use of Fourier transform (without the terﬁ%). It will be proved that the direct (without
Fourier) resolution of Eq. (11) leads to an unstable heat equation. Equation (11) is a sec
order linear partial differential equation. It can be solved by Fourier—Fourier transform, |
let us try a splitting method as follows:

a9 a9

-~ =2 _0 25

ot T Vo ) (25)
ag  , d%g
b= - 26
at T 0%xav (26)

This system represents a linear transport Eq. (25) and a second-order parabolic equat
a noncanonical form.
The solution of the transport Eq. (25) is given by

g(x,v,t) = g(x — vt, v, 0). (27)
In order to solve Eqg. (26) we introduce the change of variables
2X = X1 — Y1,
28
{ 2v = X1 + V1. (28)

Introducing the relation (28) into Eq. (26), we obtain the canonical form

99 _ Uzazg 29%g

at o a—y% Vg 8_)(]2_ =0. (29)
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We have obtained a canonical linear partial differential equation, which can be sol
a priori by a splitting method as follows:

dg  ,0°g
99 _2%8 o 30
ot 0gy? (30)
dg  ,9%g
9L %8 31
at 05 &1

The difference between the last equations reside in their stability. It is well known t
Eq. (30) is stable but Eg. (31), called the retrograde heat equation, is unstable with res
to perturbations. Consequently a solution to Eq. (11) by the splitting method (25)—(26
unstable without Fourier.

Now we remark that the stability of partial differential equations depends mainly
their highest-order terms. Therefore, since we have seen above that Eq. (26) is unst
the resolution of Eq. (11) is also unstable. Hence we must not separate thevt%ms

and vgf;—a%, and we must be very careful in the treatment of these two terms. As showr
Sections 2 and 3, this can be achieved only by the use of Fourier—Fourier transform. In
case the filtering of the initial distribution function becomes a simple multiplication whi
serves to damp high wavelengths, as we have seen in Section 2. That operation hide
does not remove the filamentation.

In order to understand what happens in the filtering method, let us give a rough carice
of the instability. We consider the trivial equation

{%(t, X) = 0, 32)

u(o, x) = u°(x),

and we consider its convolution by a time-dependent gaussian function,

1 2
_ —X* /40 (T—t)
v(t, X) = u(t, X) * 74]10(1_ = t)e . (33)

It is easy to see that thansolves

v 9%y
v(0, x) = v2(x).

As in the Vlasov case, it is necessary thahas the form of a convolution in order that (34)
has a solution.

LEMMA 1. Assume that solves for some > 0

v 9%
St to52=0 (t,x)€]0, T[ x R.
Thenv(0) has the form

1
v(0) = w % —— g X/%T
Ao

—

for some functionw.
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Proof. Definez(t, x) = v(T —t, x) andw(x) = v(X, T). Thenz solves the usual heat
equation

z(0, X) = w(X).

It is well-known that the unique solution to (35) is given by the kernel of the heat equati

1
Z(t, X) = w(X) x ﬁe_xz/‘m, (36)
and in particular
(0, X) = 2(T, X) = w(X) x 1 e (37)
’ ' VanoT

Therefore, Eg. (34) has no solution, unleg8, x) has the form (37), but it is difficult
to keep this form when introducing perturbations. It is well known that the backward h
Eqg. (34) is very unstable with respect to perturbations. The only way to solve Eq. (34) i
use Fourier transform, in which case we obtain

%’t’ —om?y = 0. (38)
The solution to (38) is given by
S(m, t) = Po(m)e”™, (39)
7°(m) = 6°(mye ™7, (40)
or,
5(m, t) = t(m, 0)e ™ T, (41)

In the Fourier variable, the exponential term does not improve regularity, it is just a mu
plication. =

5. CONCLUSION

The numerical integration of the Vlasov equation has been studied intensely during
recent years, since a knowledge of its nonlinear evolution is indispensable in the un
standing of plasmas. A major difficulty encountered in these studies is the phase s
filamentation of the distribution function. The filtering method introduced by Klimas
reminiscent of the Fokker—Planck term introduced in [7, 8] in the Fourier—Hermite meth
However, the comparison is fallacious. The finite number of Hermite polynomials inti
duces a bouncing of the information and triggers instability. The Fokker—Planck term dar
the high-order Hermite coefficients suppressing the instability but at the price of a mc
fication of the physics of the problem. On the contrary, the method of Klimas involve:
second-order term that does not change the problem; it can be compared with a heat «
tion which is forward in one variable and backward in the other variable. The filtering fix
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the behavior of the initial conditions, behavior which is difficult to maintain as time go
on in a numerical simulation, unless one uses a Fourier—Fourier method. This was outl
by Klimas himself. However, the filtering is then just a multiplication which does not he
numerically. The smallness at the border is just an artifact and tends to hide the realit
the approximation. It is important to point out that filamentation is a physical property, &
that the splitting method does not trigger any numerical instability. Indeed, in any sta
numerical method such as [17] or splines methods having a humerical viscosity, it is
necessary to introduce another one explicitly by a Gaussian filtering.
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