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1. INTRODUCTION

The earliest numerical methods introduced to solve the Vlasov–Poisson system were
polynomial expansions [1]. In these methods, the position dependence is usually expanded
in Fourier modes and the velocity dependence is treated either through Fourier modes [2–6]
or Hermite polynomials [7–11]. Then splitting schemes appeared. In those schemes the
initial Vlasov equations split in two partial differential equations, one inx, t the other in
v, t . These equations must be solved alternatively [1]. A simple way of solving the splited
equations is to use Fourier transform alternatively for bothx andv subspaces [12, 13].
The tendency of the distribution functionf (x, v, t) to develop steep gradients in phase
space (“the filamentation”) inhibits the numerical solution to the Vlasov–Poisson system
[13]. In order to ward off this problem Klimas has introduced a smoothed Fourier–Fourier
method [16]. This method consists of convolving the original distribution function with a
Gaussian distribution function and then solving the new system with a transformed splitting
algorithm. Unfortunately, a second-order term appears in the new equation.

In this work, we study how this term affects the numerical resolution. In particular
we prove that instability occurs in the linear version of the Vlasov equation obtained by
considering only free noninteracting particles. We prove also that the use of Fourier–Fourier
transform is a fundamental requirement for solving numerically this new equation. We point
out an important property, which is not completely clarified in [16], concerning the filtered
distribution function in the transformed space. The paper is organized as follows. In the
second section we define the mathematical model. In Section 3 we prove the instability of
the smoothed equation with respect to perturbations. Section 4 is devoted to the need of
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using Fourier–Fourier transforms to obtain a stable splitting scheme. Our conclusions are
given in Section 5.

2. THE MATHEMATICAL MODEL

The evolution of a one-dimensional electron plasma in a periodic box can be described
by the normalized Vlasov–Poisson system.

∂ f

∂t
+ v ∂ f

∂x
+ E(x, t)

∂ f

∂v
= 0, (1)

∂E

∂x
=
∫

f (x, v, t) dv − 1,
1

L

∫ ∫
f (x, v, t) dx dv = 1, (2)

where f (x, v, t) denotes the electron distribution function,E(x, t) is the electric field, and
L is the length of the periodic spatial box. In these unitst is normalized to the inverse of
plasma frequencywp, v to the thermal velocityvth, andx to the Debye lengthλD.

The idea to use a splitting algorithm in time to integrate the Vlasov equation (1) was
introduced first in [2]. As it is difficult to distinguish between the mathematical filamentation
and the numerical noise, a method of filtering was introduced in [16]. Its philosophy consists
of a convolution of the distribution functionf by a Gaussian filter in the variablev to obtain
the smoothed function̄f ,

f̄ (x, v, t) =
∫

F(v − u) f (x, u, t) du, (3)

where

F(v) = 1√
2πv0

e−(v/v0)
2/2, (4)

andv0 is a constant parameter giving the width of the Gaussian filter in thermal velocity
units. We remark that̄E = E since∫

f dv =
∫

f̄ dv. (5)

Now, in order to obtain a new equation on̄f we compute as in [16]

∂ f̄

∂t
=
∫

F(v − u)
∂ f

∂t
du, (6)

v
∂ f̄

∂x
= v

∫
F(v − u)

∂ f

∂x
du

=
∫
(v − u)F(v − u)

∂ f

∂x
du+

∫
F(v − u)u

∂ f

∂x
du

=
[
v2

0 F(v − u)
∂ f

∂x

]+∞
−∞
− v2

0

∫
F(v − u)

∂2 f

∂x∂u
du+

∫
F(v − u)u

∂ f

∂x
du

= −v2
0
∂2 f̄

∂x∂v
+
∫

F(v − u)u
∂ f

∂x
du, (7)
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∂ f̄

∂v
= −

∫
(v − u)

v2
0

F(v − u) f (x, u, t) du

=
∫

F(v − u)
∂ f

∂u
du. (8)

Combining, (6), (7), and (8), we obtain that̄f solves

∂ f̄

∂t
+ v ∂ f̄

∂x
+ Ē(x, t)

∂ f̄

∂v
= −v2

0
∂2 f̄

∂x∂v
, (9)

∂ Ē

∂x
=
∫

f̄ (x, v, t) dv − 1. (10)

The aim of the present paper is to compare the stability properties with respect to per-
turbations of Eqs. (1) and (9). The conclusion we get is that the solutions to (9) can be
obtained only by the use of Fourier transforms and so are very sensitive to perturbations.
Consequently we have to be extremely careful when using such a method for numerical
computation, in the case of general initial conditions.

Since the filamentation process is associated to the free streaming termv
∂ f
∂x , it is

sufficient to consider the free streaming problem, dropping into (9) the termĒ(x, t) ∂ f̄
∂v

.
Thus, let us only consider the equation{

∂g
∂t + v ∂g

∂x = −v2
0
∂2g
∂x∂v ,

g(x, v,0) = g0(x, v).
(11)

In order to solve exactly Eq. (11), let us define the double Fourier transformg̃ of g both
in x andv by

g̃(m, ν, t) = 1

L

∫ L

x=0

∫
v∈R

e−i(m 2π
L x+νv)g(x, v, t) dx dv, (12)

Introducing (12) in (11), we obtain

∂ g̃

∂t
− k0m

∂ g̃

∂ν
= v2

0k0mνg̃, (13)

wherek0 is the fundamental wave numberk0 = 2π
L .

Now let us study the Cauchy problem, which consists of solving Eq. (13) with initial
condition

g̃(m, ν,0) = g̃0(m, ν). (14)

The solution of system (13)–(14) is given by

g̃(m, ν, t) = g̃0(m, ν +mk0t)ev
2
0mk0νt e

1
2v

2
0m2k2

0t2
. (15)

Then, in order to obtain a solution to (11), we need to find a functiong such that its
Fourier transform is̃g defined in (15). Ifg̃0(m, ν) is an arbitrary function, we observe that,
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asymptotically, ifν andm have the same sign then the termev
2
0mk0νt e

1
2v

2
0m2k2

0t2
in (15) tends

exponentially to infinity, and therefore there is no function havingg̃ as the Fourier transform.
Consequently there is no well behaved solution to (11) ifg0 is an arbitrary function [14].
On the contrary, let the initial distribution functiong0 take the form

g0(x, v) = f0(x, v)× F(v); (16)

then

g̃0(m, ν) = f̃ 0(m, ν)e
− 1

2v
2
0ν

2
. (17)

Hence, we get from (15)

g̃(m, ν, t) = f̃ 0(m, ν +mk0t)e−
1
2v

2
0ν

2
, (18)

or equivalently

f̃ (m, ν, t) = f̃ 0(m, ν +mk0t) = g̃(m, ν, t)e
1
2v

2
0ν

2
, (19)

which is the solution to the Vlasov equation. Of course, at this level, equation

∂ f

∂t
+ v ∂ f

∂x
= 0 (20)

and Eq. (11) are equivalent, but this may no longer be the case when introducing discrete
approximation. By these formulas we see indeed that the fact thatg0 has the form (16) is
crucial, and, as we shall see in Section 3, we have to keep this property for all times in
discrete approximation.

Our purpose is to understand what does the filtering method. As a first point we have to
realize that the filamentation is a physical process and the details off (x, v, t); i.e., the high
ν components must be kept and play a crucial role in situations like in the echo problem
[15]. The multiplication of these largeν components bye−

1
2v

2
0ν

2
neither bring nor destroy

the needed information, but we should be concerned that a too largeν0 can introduce too
small g̃(m, ν) exposed to destruction by roundoff error.

It must be noticed that many checks of numerical methods use the linear Landau damping
as a test case. It is a misleading check. The perturbed part of the distribution function
enter only through its componentsν= 0 (the perturbed density). All the subtle nonlinear
phenomena are hidden inf (m, ν, t). Notice that f (m, ν= 0, t)= f̄ (m, ν= 0, t), which is
the only value needed for the linear Landau damping problem.

3. STABILITY

It is interesting to investigate the stability of (11) with respect to perturbations. For that
purpose, we compare the exact solution to (11), which can be written as

g(t) = S(t)g(0), (21)
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with S(t) the resolution operator, which can be expressed by (15), and an approximate
solutionhn computed by

hn+1 = A(1t)hn, (22)

with A(1t) an approximate resolution operator, andh0 = g(0). At a fixed timeT = n1t ,
we assume that there is a slight difference betweenhn andg as

hn = g(T)+ δg. (23)

Then, in the next step, since the operatorS is linear, the difference betweenhn+1 andg
takes the following form:

hn+1− g(t) = (A(1t)− S(1t))hn + S(1t)δg. (24)

For this difference to be small, we need both terms in the right-hand side of (24) to
be small. The first one depends on the wayA approachesS, but for the second one, as
we discussed before,δ̃g needs to be small with respect toe−v

2
0ν

2/2. Therefore, a necessary
condition for the approximate method to be stable is that the operatorA(1t) preserves the
exponential decrease at infinity of the Fourier transform. Generally, this property is very
difficult to obtain unlessA(1t) is defined itself by Fourier transform. Moreover, it might
be lost when taking into account the acceleration term due to the electric field.

4. NEED TO USE FOURIER–FOURIER TRANSFORM

In the following, we show that the resolution of Eq. (9) can be performed only by the
use of Fourier transform (without the termE ∂ f

∂v
). It will be proved that the direct (without

Fourier) resolution of Eq. (11) leads to an unstable heat equation. Equation (11) is a second-
order linear partial differential equation. It can be solved by Fourier–Fourier transform, but
let us try a splitting method as follows:

∂g

∂t
+ v ∂g

∂x
= 0, (25)

∂g

∂t
+ v2

0
∂2g

∂x∂v
= 0. (26)

This system represents a linear transport Eq. (25) and a second-order parabolic equation in
a noncanonical form.

The solution of the transport Eq. (25) is given by

g(x, v, t) = g(x − vt, v,0). (27)

In order to solve Eq. (26) we introduce the change of variables{
2x = x1− y1,

2v = x1+ y1.
(28)

Introducing the relation (28) into Eq. (26), we obtain the canonical form

∂g

∂t
− v2

0
∂2g

∂y2
1

+ v2
0
∂2g

∂x2
1

= 0. (29)



NOTE 445

We have obtained a canonical linear partial differential equation, which can be solved
a priori by a splitting method as follows:

∂g

∂t
− v2

0
∂2g

∂y2
1

= 0, (30)

∂g

∂t
+ v2

0
∂2g

∂x2
1

= 0. (31)

The difference between the last equations reside in their stability. It is well known that
Eq. (30) is stable but Eq. (31), called the retrograde heat equation, is unstable with respect
to perturbations. Consequently a solution to Eq. (11) by the splitting method (25)–(26) is
unstable without Fourier.

Now we remark that the stability of partial differential equations depends mainly on
their highest-order terms. Therefore, since we have seen above that Eq. (26) is unstable,
the resolution of Eq. (11) is also unstable. Hence we must not separate the termsv

∂g
∂x

andv2
0
∂2g
∂x∂v , and we must be very careful in the treatment of these two terms. As shown in

Sections 2 and 3, this can be achieved only by the use of Fourier–Fourier transform. In this
case the filtering of the initial distribution function becomes a simple multiplication which
serves to damp high wavelengths, as we have seen in Section 2. That operation hides but
does not remove the filamentation.

In order to understand what happens in the filtering method, let us give a rough caricature
of the instability. We consider the trivial equation{

∂u
∂t (t, x) = 0,

u(0, x) = u0(x),
(32)

and we consider its convolution by a time-dependent gaussian function,

v(t, x) = u(t, x) ∗ 1√
4πσ(T − t)

e−x2/4σ(T−t). (33)

It is easy to see that thenv solves {
∂v
∂t + σ ∂2v

∂x2 = 0,

v(0, x) = v0(x).
(34)

As in the Vlasov case, it is necessary thatv0 has the form of a convolution in order that (34)
has a solution.

LEMMA 1. Assume thatv solves for someσ > 0

∂v

∂t
+ σ ∂

2v

∂x2
= 0, (t, x)∈ ]0, T [×R.

Thenv(0) has the form

v(0) = w ∗ 1√
4πσT

e−x2/4σT

for some functionw.
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Proof. Definez(t, x) = v(T − t, x) andw(x) = v(x, T). Thenz solves the usual heat
equation {

∂z
∂t − σ ∂2z

∂x2 = 0,

z(0, x) = w(x).
(35)

It is well-known that the unique solution to (35) is given by the kernel of the heat equation,

z(t, x) = w(x)× 1√
4πσ t

e−x2/4σ t , (36)

and in particular

v(0, x) = z(T, x) = w(x)× 1√
4πσT

e−x2/4σT . (37)

Therefore, Eq. (34) has no solution, unlessv(0, x) has the form (37), but it is difficult
to keep this form when introducing perturbations. It is well known that the backward heat
Eq. (34) is very unstable with respect to perturbations. The only way to solve Eq. (34) is to
use Fourier transform, in which case we obtain

∂ṽ

∂t
− σm2ṽ = 0. (38)

The solution to (38) is given by

ṽ(m, t) = ṽ0(m)eσm2t , (39)

ṽ0(m) = ũ0(m)e−σm2T , (40)

or,

ṽ(m, t) = ũ(m, 0)e−σm2(T−t). (41)

In the Fourier variable, the exponential term does not improve regularity, it is just a multi-
plication. ■

5. CONCLUSION

The numerical integration of the Vlasov equation has been studied intensely during the
recent years, since a knowledge of its nonlinear evolution is indispensable in the under-
standing of plasmas. A major difficulty encountered in these studies is the phase space
filamentation of the distribution function. The filtering method introduced by Klimas is
reminiscent of the Fokker–Planck term introduced in [7, 8] in the Fourier–Hermite method.
However, the comparison is fallacious. The finite number of Hermite polynomials intro-
duces a bouncing of the information and triggers instability. The Fokker–Planck term damps
the high-order Hermite coefficients suppressing the instability but at the price of a modi-
fication of the physics of the problem. On the contrary, the method of Klimas involves a
second-order term that does not change the problem; it can be compared with a heat equa-
tion which is forward in one variable and backward in the other variable. The filtering fixes
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the behavior of the initial conditions, behavior which is difficult to maintain as time goes
on in a numerical simulation, unless one uses a Fourier–Fourier method. This was outlined
by Klimas himself. However, the filtering is then just a multiplication which does not help
numerically. The smallness at the border is just an artifact and tends to hide the reality of
the approximation. It is important to point out that filamentation is a physical property, and
that the splitting method does not trigger any numerical instability. Indeed, in any stable
numerical method such as [17] or splines methods having a numerical viscosity, it is not
necessary to introduce another one explicitly by a Gaussian filtering.
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